Лекция 2. Линейные нейронные сети
Прежде чем мы перейдем к деталям глубоких нейронных сетей, нам нужно охватить основы обучения нейронных сетей. В этой главе мы рассмотрим весь процесс обучения, включая определение простых архитектур нейронных сетей, обработку данных, указание функции потерь и обучение модели.
Чтобы упростить понимание, мы начнем с самых простых концепций. К счастью, классические методы статистического обучения, такие как линейная регрессия и регрессия softmax, можно преобразовать в линейные нейронные сети. Начиная с этих классических алгоритмов, мы познакомим вас с основами, создав основу для более сложных методов в оставшейся части книги.
2.1. Линейная регрессия
Регрессия относится к набору методов моделирования отношения между одной или несколькими независимыми переменными и зависимой переменной. В естественных и социальных науках цель регрессии чаще всего используется для характеристики взаимосвязи между входами и выходами. С другой стороны, машинное обучение чаще всего связано с прогнозированием.
Проблемы регрессии возникают всякий раз, когда мы хотим предсказать числовое значение. Общие примеры включают прогнозирование цен (домов, запасов и т. д.), Прогнозирование продолжительности пребывания (для пациентов в больнице), прогнозирование спроса (для розничных продаж) и многие другие. Не всякая задача прогнозирования - это классическая проблема регрессии. В следующих разделах мы познакомимся с проблемами классификации, цель которых - предсказать принадлежность к набору категорий.
2.1.1. Основные элементы линейной регрессии
Линейная регрессия может быть, как самым простым, так и самым популярным среди стандартных инструментов регрессии. Возникнув на заре 19 века, линейная регрессия основана на нескольких простых предположениях. Во-первых, мы предполагаем, что взаимосвязь между независимыми переменными x и зависимой переменной y является линейной, т.е. что y может быть выражено как взвешенная сумма элементов в x, учитывая некоторый шум в наблюдениях. Во-вторых, мы предполагаем, что любой шум ведет себя хорошо (согласно распределению Гаусса).
Чтобы мотивировать подход, давайте начнем с рабочего примера. Предположим, мы хотим оценить цены на дома (в долларах) на основе их площади (в квадратных футах) и возраста (в годах). Чтобы на самом деле соответствовать модели для прогнозирования цен на жилье, нам необходимо получить набор данных, состоящий из продаж, для которых мы знаем цену продажи, площадь и возраст для каждого дома. В терминологии машинного обучения набор данных называется набором обучающих данных или обучающим набором, а каждая строка (здесь данные, соответствующие одной продаже) называется примером (или точкой данных, экземпляром данных, образцом). То, что мы пытаемся предсказать (цену), называется меткой (или целью). Независимые переменные (возраст и площадь), на которых основаны прогнозы, называются функциями (или ковариатами).
Обычно мы будем использовать n для обозначения количества примеров в нашем наборе данных. Мы индексируем точки данных по i, обозначая каждый вход как x(i) = [x(i)1, x(i)2]⊤ и соответствующую метку как y(i).
Линейная модель
Допущение линейности просто говорит о том, что цель (цена) может быть выражена как взвешенная сумма характеристик (площадь и возраст):
price = warea · area + wage · age + b.                               (2.1.1)
В (2.1.1) товар и заработная плата называются весами, а b называется смещением (также называемым смещением или пересечением).
Веса определяют влияние каждой характеристики на наш прогноз, а смещение просто говорит о том, какое значение должна принимать прогнозируемая цена, когда все характеристики принимают значение 0. Даже если мы никогда не увидим дома с нулевой площадью или дома с нулевым возрастом, старые, нам все еще нужна предвзятость, иначе мы ограничим выразительность нашей модели. Строго говоря, (2.1.1) - это аффинное преобразование входных признаков, которое характеризуется линейным преобразованием признаков посредством взвешенной суммы в сочетании с переводом через добавленное смещение.
Для данного набора данных наша цель - выбрать веса w и смещение b так, чтобы в среднем прогнозы, сделанные в соответствии с нашей моделью, наилучшим образом соответствовали истинным ценам, наблюдаемым в данных. Модели, прогноз выходных данных которых определяется аффинным преобразованием входных функций, являются линейными моделями, в которых аффинное преобразование определяется выбранными весами и смещением.
В дисциплинах, где обычно сосредотачиваются на наборах данных только с несколькими функциями, явное выражение моделей в полной форме, как это, является обычным явлением. В машинном обучении мы обычно работаем с многомерными наборами данных, поэтому удобнее использовать нотацию линейной алгебры. Когда наши входные данные состоят из d характеристик, мы выражаем наш прогноз yˆ (в общем случае символ «шляпа» обозначает оценки) как
yˆ = w1x1 + ... + wdxd + b.                                                  (2.1.2)
Собрав все характеристики в вектор x ∈ Rd и все веса в вектор w ∈ Rd, мы можем компактно выразить нашу модель с помощью скалярного произведения:
yˆ = w⊤x + b.                                                                     (2.1.3)
В (2.1.3) вектор x соответствует характеристикам одной точки данных. Нам часто будет удобно ссылаться на особенности всего нашего набора данных из n примеров через матрицу плана X ∈ Rn × d. Здесь X содержит одну строку для каждого примера и один столбец для каждой функции.
Для набора признаков X предсказания yˆ ∈ Rn может быть выражено через произведение матрица-вектор:
yˆ = Xw + b,                                                                   (2.1.4)
где при суммировании применяется трансляция (см. раздел 2.1.3). Учитывая особенности обучающего набора данных X и соответствующие (известные) метки y, цель линейной регрессии - найти вектор весов w и член смещения b, который учитывает особенности новой точки данных, выбранной из того же распределения, что и X, новый метка точки данных будет (в ожидании) предсказана с наименьшей ошибкой - величина погрешности измерения. Таким образом, даже если мы уверены, что лежащая в основе взаимосвязь является линейной, мы будем включать шумовой член для учета таких ошибок.
Прежде чем мы сможем приступить к поиску лучших параметров (или параметров модели) w и b, нам потребуются еще две вещи: (i) мера качества для некоторой данной модели; и (ii) процедура обновления модели для улучшения ее качества.
Функция потерь
Прежде чем мы начнем думать о том, как соответствовать нашей модели, нам нужно определить меру приспособленности. Функция потерь количественно определяет расстояние между реальным и прогнозируемым значением цели. Потери обычно представляют собой неотрицательное число, где меньшие значения лучше, а точные предсказания приводят к потере 0. Самая популярная функция потерь в задачах регрессии - это квадратичная ошибка. Когда наш прогноз для примера i равен yˆ (i), а соответствующая истинная метка - y (i), квадрат ошибки определяется следующим образом:
l(i)(w, b) = ½ (yˆ(i) - y(i))2,                                                      (2.1.5)
Константа 1/2 не имеет реального значения, но окажется удобным с точки зрения обозначений, сокращая, когда мы берем производную от убытка. Поскольку набор обучающих данных предоставлен нам и, таким образом, находится вне нашего контроля, эмпирическая ошибка является только функцией параметров модели. Чтобы сделать вещи более конкретными, рассмотрим приведенный ниже пример, где мы строим задачу регрессии для одномерного случая, как показано на рис. 2.1.1. (см. рисунок в книге)
Обратите внимание, что большие различия между оценками yˆ (i) и наблюдениями y (i) приводят к еще большему вкладу в потери из-за квадратичной зависимости. Чтобы измерить качество модели на всем наборе данных из n примеров, мы просто усредняем (или, что эквивалентно, суммируем) потери на обучающем наборе.
L (w, b) = 1/n ∑n i = 1 l(i)(w, b) = 1/n ∑ni = 1 ½ (w⊤x(i) + b - y(i))2,      (2.1.6)
При обучении модели мы хотим найти параметры (w ∗, b ∗), которые минимизируют общие потери во всех обучающих примерах:
w*, b* = argmin w, b L (w, b).                                                            (2.1.7)
Аналитическое решение
Линейная регрессия оказывается необычно простой задачей оптимизации. В отличие от большинства других моделей, с которыми мы встретимся в этом курсе, линейную регрессию можно решить аналитически, применив простую формулу. Для начала, мы можем включить смещение b в параметр w, добавив столбец в матрицу плана, состоящую из всех единиц. Тогда наша задача прогнозирования - минимизировать ∥y − Xw∥2.
На поверхности потерь есть только одна критическая точка, которая соответствует минимуму потерь по всей области. Взяв производную потерь по w и установив ее равной нулю, получим аналитическое (в замкнутой форме) решение:
w∗ = (X⊤X)-1X⊤y.                                                               (2.1.8)
Хотя простые проблемы, такие как линейная регрессия, могут допускать аналитические решения, вам не следует привыкать к такой удаче. Хотя аналитические решения позволяют проводить хороший математический анализ,
Требование аналитического решения настолько ограничено, что исключает все глубокое обучение.
Миниатюрный стохастический градиентный спуск
Даже в тех случаях, когда мы не можем решить модели аналитически, оказывается, что мы все еще можем эффективно обучать модели на практике. Более того, для многих задач эти модели, которые трудно оптимизировать, оказываются настолько лучше, что выяснение того, как их обучать, окупается.
Ключевой метод оптимизации практически любой модели глубокого обучения, который мы будем использовать в этом курсе, состоит в итеративном уменьшении ошибки путем обновления параметров в направлении, которое постепенно снижает функцию потерь. Этот алгоритм называется градиентным спуском.
Самое наивное применение градиентного спуска состоит в том, чтобы взять производную от функции потерь, которая представляет собой среднее значение потерь, вычисленных для каждого отдельного примера в наборе данных. На практике это может быть очень медленным: мы должны передать весь набор данных, прежде чем делать одно обновление. Таким образом, мы часто довольствуемся выборкой случайной мини-партии примеров каждый раз, когда нам нужно вычислить обновление, вариант, называемый мини-пакетным стохастическим градиентным спуском.
На каждой итерации мы сначала случайным образом выбираем мини-серию B, состоящую из фиксированного количества обучающих примеров. Затем мы вычисляем производную (градиент) среднего убытка в мини-пакете с учетом параметров модели. Наконец, мы умножаем градиент на заранее определенное положительное значение η и вычитаем полученный член из текущих значений параметров.
Мы можем выразить обновление математически следующим образом (∂ обозначает частную производную):
(w, b) ← (w, b) – η/| B |Σi∈B∂ (w, b)L(i)(w, b).                            (2.1.9)
Подводя итог, шаги алгоритма следующие: (i) мы инициализируем значения параметров модели, обычно случайным образом; (ii) мы итеративно выбираем случайные мини-пакеты из данных, обновляя параметры в направлении отрицательного градиента. Для квадратичных потерь и аффинных преобразований это можно явно записать следующим образом:
w ← w – η/| B | Σi∈B∂wl(i)(w, b) = w – η/| B | Σi∈B x(i)(w⊤x(i) + b - y(i)),
b ← b – η/| B | Σi∈B ∂bl(i)(w, b) = b – η/| B | Σi∈B(w⊤x(i) + b - y(i)),        (2.1.10)
Отметим, что w и x - векторы в (2.1.10). Здесь более элегантная векторная запись делает математику более удобочитаемой, чем выражение вещей в терминах коэффициентов, скажем, w1, w2,. , , , wd. Установленная мощность |B| представляет количество примеров в каждом минипакете (размер партии), а η обозначает скорость обучения. Мы подчеркиваем, что значения размера пакета и скорости обучения задаются заранее вручную и обычно не изучаются посредством обучения модели. Эти параметры, которые настраиваются, но не обновляются в цикле обучения, называются гиперпараметрами. Настройка гиперпараметров - это процесс выбора гиперпараметров, который обычно требует, чтобы мы отрегулировали их на основе результатов цикла обучения, оцененных на отдельном наборе данных проверки (или наборе проверки).
После обучения для некоторого заранее определенного количества итераций (или до тех пор, пока не будут выполнены некоторые другие критерии остановки), мы записываем оценочные параметры модели, обозначенные wˆ, ˆb. Обратите внимание, что даже если наша функция действительно линейна и бесшумна, эти параметры не будут точными минимизаторами потерь, потому что, хотя алгоритм медленно сходится к минимизаторам, он не может достичь этого точно за конечное количество шагов.
Линейная регрессия оказывается проблемой обучения, когда существует только один минимум во всей области. Однако для более сложных моделей, таких как глубокая сеть, поверхности потерь содержат много минимумов. К счастью, по причинам, которые еще не до конца понятны, практикующие специалисты по глубокому обучению редко пытаются найти параметры, которые минимизируют потери на тренировочных наборах. Более сложная задача - найти параметры, которые позволят достичь низких потерь данных, которые мы раньше не видели, - задача, называемая обобщением. Мы возвращаемся к этим темам на протяжении всего курса.
Прогнозы с помощью изученной модели
Учитывая изученную модель линейной регрессии wˆ⊤x + ˆb, теперь мы можем оценить цену нового дома (не содержащегося в обучающих данных) с учетом его площади x1 и возраста x2. Оценка целей с учетом характеристик обычно называется предсказанием или выводом.
Мы постараемся придерживаться предсказания, потому что называть этот вывод шага, несмотря на то, что он стал стандартным жаргоном в глубоком обучении, в некоторой степени неверно. В статистике логический вывод чаще всего означает оценку параметров на основе набора данных. Это неправильное использование терминологии является распространенным источником путаницы, когда специалисты по глубокому обучению разговаривают со статистиками.
2.1.2. Векторизация для скорости
При обучении наших моделей мы обычно хотим обрабатывать целые мини-партии примеров одновременно. Чтобы сделать это эффективно, необходимо векторизовать вычисления и использовать библиотеки быстрой линейной алгебры, а не писать дорогостоящие циклы for на Python.
%matplotlib inline
from d2l import mxnet as d2l
import math
from mxnet import np
import time

Чтобы проиллюстрировать, почему это так важно, мы можем рассмотреть два метода добавления векторов. Для начала мы создаем два 10000-мерных вектора, содержащих все единицы. В одном методе мы будем перебирать векторы с помощью цикла for Python. В другом методе мы будем полагаться на единственный вызов +.
n = 10000
а = np.ones (n)
b = np.ones (n)

Поскольку в этом курсе мы будем часто измерять время работы, давайте определим таймер.
class Timer: #@save
"""Record multiple running times."""
def __init__(self):
self.times = []
self.start()
def start(self):
"""Start the timer."""
self.tik = time.time()
def stop(self):
"""Stop the timer and record the time in a list."""
self.times.append(time.time() - self.tik)
return self.times[-1]
def avg(self):
"""Return the average time."""
return sum(self.times) / len(self.times)
def sum(self):
"""Return the sum of time."""
return sum(self.times)
def cumsum(self):
"""Return the accumulated time."""
return np.array(self.times).cumsum().tolist()

Теперь мы можем протестировать рабочие нагрузки. Сначала мы добавляем их, по одной координате за раз, используя цикл for.
c = np.zeros(n)
timer = Timer()
for i in range(n):
c[i] = a[i] + b[i]
f'{timer.stop():.5f} sec'
'4.54396 sec'

В качестве альтернативы мы полагаемся на оператор reloaded + для вычисления поэлементной суммы.
timer.start()
d = a + b
f'{timer.stop():.5f} sec'
'0.00037 sec'

Вы, наверное, заметили, что второй метод значительно быстрее первого. Векторизация кода часто дает ускорение на порядок. Более того, мы переносим в библиотеку больше математических функций, и нам не нужно самостоятельно писать столько вычислений, что снижает вероятность ошибок.
2.1.3. Нормальное распределение и квадрат потерь
Хотя вы уже можете запачкать руки, используя только приведенную выше информацию, ниже мы можем более формально мотивировать цель квадратичных потерь с помощью предположений о распределении шума.
Линейная регрессия была изобретена Гауссом в 1795 году, который также открыл нормальное распределение (также называемое гауссовым). Оказывается, связь между нормальным распределением и линейной регрессией глубже, чем обычное происхождение. Чтобы освежить вашу память, плотность вероятности нормального распределения со средним µ и дисперсией σ2 (стандартное отклонение σ) задается как
р (х) = 1/√2πσ2 ехр (-1/2σ2 (х - µ)2),                           (2.1.11)
Ниже мы определяем функцию Python для вычисления нормального распределения.
def normal(x, mu, sigma):
p = 1 / math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(-0.5 / sigma**2 * (x - mu)**2)
We can now visualize the normal distributions.
# Use numpy again for visualization
x = np.arange(-7, 7, 0.01)
# Mean and standard deviation pairs
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',
ylabel='p(x)', figsize=(4.5, 2.5), legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

Как мы видим, изменение среднего соответствует сдвигу по оси x, а увеличение дисперсии расширяет распределение, понижая его пик.
Один из способов мотивировать линейную регрессию с помощью функции потерь среднеквадратичной ошибки (или просто квадрата потерь) - это формально предположить, что наблюдения возникают из-за зашумленных наблюдений, где шум обычно распределяется следующим образом:
у = w⊤x + b + ϵ, где ϵ ∼ N (0, σ2).                                       (2.1.12)
Таким образом, теперь мы можем записать вероятность увидеть конкретный y для данного x через
Р (у | х) = 1/√2πσ2 ехр (-1/2σ2(y - w⊤x - b)2),                     (2.1.13)
Теперь, в соответствии с принципом максимального правдоподобия, наилучшими значениями параметров w и b являются те, которые максимизируют вероятность всего набора данных:
P (y | X) = ∏ni = 1 р (у(i)| х(i)).                                                 (2.1.14)
Оценщики, выбранные по принципу максимального правдоподобия, называются оценщиками максимального правдоподобия. Хотя максимизация произведения многих экспоненциальных функций может показаться трудной, мы можем значительно упростить ситуацию, не меняя цели, вместо этого максимизируя логарифм вероятности. По историческим причинам оптимизация чаще выражается как минимизация, а не как максимизация. Итак, ничего не меняя, мы можем минимизировать отрицательное логарифмическое правдоподобие - log P (y | X). Работа по математике дает нам:
- log P (y | X) = ∑ni = 1 ½ log (2πσ2) + 1/2σ2(y(i) - w⊤x(i) - b)2,          (2.1.15)
Теперь нам просто нужно еще одно предположение, что σ - некоторая фиксированная константа. Таким образом, мы можем игнорировать первый член, потому что он не зависит от w или b. Теперь второй член идентичен квадрату потерь ошибки, введенному ранее, за исключением мультипликативной константы 1/σ2. К счастью, решение не зависит от σ. Отсюда следует, что минимизация среднеквадратичной ошибки эквивалентна оценке максимального правдоподобия линейной модели в предположении аддитивного гауссовского шума.
2.1.4. От линейной регрессии к глубоким сетям
Пока мы говорили только о линейных моделях. Хотя нейронные сети охватывают гораздо более богатое семейство моделей, мы можем начать думать о линейной модели как о нейронной сети, выразив ее на языке нейронных сетей. Для начала давайте начнем с того, что переписываем вещи в «слоистой» нотации.
Схема нейронной сети
Практики глубокого обучения любят рисовать диаграммы, чтобы наглядно представить, что происходит в их моделях.
На рис. 2.1.2 (см. рисунок в книге) мы изобразили нашу модель линейной регрессии в виде нейронной сети. Обратите внимание, что на этих диаграммах выделяется шаблон подключения, например, как каждый вход подключен к выходу, но не значения, принимаемые весами или смещениями.
Для нейронной сети, показанной на рис. 2.1.2, входами являются x1,. , , , xd, поэтому количество входов (или размерность объекта) во входном слое равно d. Выходной сигнал сети на рис. 2.1.2 равен o1, поэтому количество выходов в выходном слое равно 1. Обратите внимание, что все входные значения заданы и имеется только один вычисленный нейрон. Сосредоточившись на том, где происходят вычисления, обычно мы не учитываем входной слой при подсчете слоев. То есть количество слоев нейронной сети на рис. 2.1.2 равно 1. Мы можем думать о моделях линейной регрессии как о нейронных сетях, состоящих только из одного искусственного нейрона, или как об однослойных нейронных сетях.
Поскольку для линейной регрессии каждый вход связан с каждым выходом (в этом случае есть только один выход), мы можем рассматривать это преобразование (выходной слой на рис. 3.1.2) как полностью связанный слой или плотный слой. В следующей главе мы поговорим намного больше о сетях, состоящих из таких слоев.
Биология
Поскольку линейная регрессия (изобретенная в 1795 году) предшествовала вычислительной нейробиологии, может показаться анахронизмом описывать линейную регрессию как нейронную сеть. Чтобы понять, почему линейные модели были естественным местом для начала, когда кибернетики / нейрофизиологи Уоррен Маккалок и Уолтер Питтс начали разрабатывать модели искусственных нейронов, рассмотрим карикатурное изображение биологического нейрона на рис. 2.1.3 (см. рисунок в книге), состоящего из дендритов (входных терминалов), ядро ​​(ЦП), аксон (выходной провод) и терминалы аксона (выходные терминалы), что позволяет подключаться к другим нейронам через синапсы.
Информация xi, поступающая от других нейронов (или датчиков окружающей среды, таких как сетчатка), принимается дендритами. В частности, эта информация взвешивается с помощью синаптических весов, определяющих эффект входных данных (например, активация или ингибирование посредством продукта xiwi). Взвешенные входные данные, поступающие из нескольких источников, объединяются в ядре в виде взвешенной суммы y = Σi xiwi + b, и эта информация затем отправляется для дальнейшей обработки в аксоне y, обычно после некоторой нелинейной обработки через σ (y). Оттуда он либо достигает места назначения (например, мышцы), либо через его дендриты попадает в другой нейрон.
Конечно, высокоуровневая идея о том, что многие такие единицы могут быть скомпонованы вместе с правильным подключением и правильным алгоритмом обучения, чтобы производить гораздо более интересное и сложное поведение, чем может выразить какой-либо один нейрон, обязана нашему изучению реальных биологических нейронных систем.
В то же время большинство исследований в области глубокого обучения сегодня мало что вдохновляет нейробиологию. Мы ссылаемся на Стюарта Рассела и Питера Норвига, которые в своем классическом учебнике по искусственному интеллекту «Искусственный интеллект: современный подход» (Russell & Norvig, 2016) указали, что, хотя самолеты могли быть вдохновлены птицами, орнитология не была основным двигателем воздухоплавания. инновации на протяжении нескольких веков. Точно так же в наши дни вдохновение в глубоком обучении в равной или большей степени исходит от математики, статистики и информатики.

Резюме
· Ключевыми компонентами модели машинного обучения являются обучающие данные, функция потерь, алгоритм оптимизации и, что совершенно очевидно, сама модель.
· Векторизация делает все лучше (в основном математика) и быстрее (в основном код).
· Минимизация целевой функции и выполнение оценки максимального правдоподобия могут означать одно и то же.
· Модели линейной регрессии также являются нейронными сетями.
Упражнения
1. Предположим, что у нас есть данные x1,… , xn ∈ R. Наша цель - найти постоянную b такую, что Σi(xi - b)2 сводится к минимуму.
· Найдите аналитическое решение для оптимального значения b.
· Как эта проблема и ее решение соотносятся с нормальным распределением?
2. Получите аналитическое решение задачи оптимизации для линейной регрессии с квадратом ошибки. Чтобы упростить задачу, вы можете опустить смещение b в задаче (мы можем сделать это принципиально, добавив один столбец к X, состоящий из всех).
· Запишите задачу оптимизации в матричной и векторной нотации (обрабатывайте все данные как одну матрицу, а все целевые значения как один вектор).
· Вычислить градиент потерь относительно w.
· Найдите аналитическое решение, установив градиент равным нулю и решив матричное уравнение.
· Когда это может быть лучше, чем использование стохастического градиентного спуска? Когда этот метод может сломаться?
3. Предположим, что модель шума, определяющая аддитивный шум ϵ, представляет собой экспоненциальное распределение.
То есть p (ϵ) = ½ ехр (- | ε |).
· Запишите отрицательную логарифмическую вероятность данных в рамках модели - log P (y | X).
· Можете ли вы найти решение в закрытой форме?
· Предложите алгоритм стохастического градиентного спуска для решения этой проблемы. Что может пойти не так (подсказка: что происходит возле стационарной точки, когда мы продолжаем обновлять параметры)? Можете ли вы это исправить?
Обсуждение (см. https://discuss.d2l.ai/t/40)
2.2. Реализация линейной регрессии с нуля
Теперь, когда вы понимаете ключевые идеи линейной регрессии, мы можем приступить к практической реализации в коде. В этом разделе мы реализуем весь метод с нуля, включая конвейер данных, модель, функцию потерь и оптимизатор стохастического градиентного спуска мини-пакета. Хотя современные фреймворки глубокого обучения могут автоматизировать почти всю эту работу, реализация вещей с нуля - единственный способ убедиться, что вы действительно знаете, что делаете. Более того, когда приходит время настраивать модели, определять наши собственные слои или функции потерь, понимание того, как все работает под капотом, окажется полезным. В этом разделе мы будем полагаться только на тензоры и автодифференцирование. После этого мы представим более лаконичную реализацию, использующую преимущества фреймворков глубокого обучения.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, np, npx
import random
npx.set_np()

2.2.1. Создание набора данных
Чтобы не усложнять задачу, мы построим искусственный набор данных в соответствии с линейной моделью с аддитивным шумом. Наша задача будет состоять в том, чтобы восстановить параметры этой модели, используя конечный набор примеров, содержащихся в нашем наборе данных. Мы будем сохранять данные низкоразмерными, чтобы их можно было легко визуализировать. В следующем фрагменте кода мы генерируем набор данных, содержащий 1000 примеров, каждый из которых состоит из 2 функций, взятых из стандартного нормального распределения. Таким образом, наш синтетический набор данных будет матрицей X ∈ R1000 × 2. Истинные параметры, генерирующие наш набор данных, будут w = [2, −3,4]⊤ и b = 4,2, а наши синтетические метки будут присвоены в соответствии со следующей линейной моделью с шумовым элементом ϵ:
у = Xw + b + ϵ.                                                                              (2.2.1)
Вы можете думать о ϵ как об обнаружении потенциальных ошибок измерения функций и меток. Мы будем предполагать, что стандартные предположения верны и, следовательно, что ϵ подчиняется нормальному распределению со средним значением 0. Чтобы упростить нашу задачу, мы установим его стандартное отклонение равным 0,01. Следующий код генерирует наш синтетический набор данных.
def synthetic_data(w, b, num_examples): #@save
"""Generate y = Xw + b + noise."""
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

Обратите внимание, что каждая строка в объектах состоит из двухмерной точки данных, а каждая строка в метках состоит из одномерного значения метки (скаляра).
print('features:', features[0],'\nlabel:', labels[0])
features: [2.2122064 1.1630787]
label: [4.662078]

Создав диаграмму рассеяния с использованием второй функции features [:, 1] и меток, мы можем четко наблюдать линейную корреляцию между ними.
d2l.set_figsize()
# The semicolon is for displaying the plot only
d2l.plt.scatter(d2l.numpy(features[:, 1]), d2l.numpy(labels), 1);

2.2.2. Чтение набора данных
Напомним, что обучающие модели состоят из нескольких проходов по набору данных, захвата одной минипачки примеров за раз и использования их для обновления нашей модели. Поскольку этот процесс является фундаментальным для обучения алгоритмов машинного обучения, стоит определить служебную функцию для перетасовки набора данных и доступа к нему в мини-пакетах.
В следующем коде мы определяем функцию data_iter, чтобы продемонстрировать одну из возможных реализаций этой функции. Функция принимает размер пакета, матрицу функций и вектор меток, в результате чего получаются мини-пакеты размера batch_size. Каждая мини-серия состоит из набора функций и меток.
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
# The examples are read at random, in no particular order
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = np.array(
indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]

В общем, обратите внимание, что мы хотим использовать минибатчи разумного размера, чтобы использовать преимущества аппаратного обеспечения графического процессора, которое отлично справляется с распараллеливанием операций. Поскольку каждый пример может быть пропущен через наши модели параллельно, а градиент функции потерь для каждого примера также может быть взят параллельно, графические процессоры позволяют нам обрабатывать сотни примеров за чуть больше время, чем может потребоваться для обработки всего одного примера.
Чтобы получить некоторую интуицию, давайте прочитаем и распечатаем первую небольшую партию примеров данных. Форма функций в каждой мини-партии говорит нам как о размере мини-партии, так и о количестве входных функций.
Точно так же наша мини-партия этикеток будет иметь форму, заданную параметром batch_size.
batch_size.
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
[[ 1.4935805 0.5353432 ]
[-0.47070336 1.2402922 ]
[ 0.00586208 -0.888118 ]
[ 0.33418044 0.9918955 ]
[-0.5538109 -0.10800398]
[-1.0352775 1.6948094 ]
[ 0.3123638 -0.727692 ]
[-1.4760977 -0.18857454]
[ 1.7041209 -0.7171319 ]
[ 0.5826811 0.8912929 ]]
[[ 5.3598285]
[-0.9524131]
[ 7.241056 ]
[ 1.5007805]
[ 3.4414072]
[-3.6350167]
[ 7.294802 ]
[ 1.8882912]
[10.043157 ]
[ 2.3109047]]

По мере того, как мы запускаем итерацию, мы последовательно получаем отдельные мини-пакеты, пока не будет исчерпан весь набор данных (попробуйте это). Хотя итерация, реализованная выше, хороша для дидактических целей, она неэффективна в том смысле, что может вызвать у нас трудности с реальными проблемами. Например, требуется, чтобы мы загрузили все данные в память и выполнили много операций произвольного доступа к памяти. Встроенные итераторы, реализованные в среде глубокого обучения, значительно более эффективны и могут работать как с данными, хранящимися в файлах, так и с данными, передаваемыми через потоки данных.
2.2.3. Инициализация параметров модели
Прежде чем мы сможем начать оптимизацию параметров нашей модели с помощью мини-пакетного стохастического градиентного спуска, нам в первую очередь необходимо иметь некоторые параметры. В следующем коде мы инициализируем веса, выбирая случайные числа из нормального распределения со средним значением 0 и стандартным отклонением 0,01 и устанавливая смещение равным 0.
w = np.random.normal (0, 0,01, (2, 1))
b = np. zeros (1)
w.attach_grad ()
b.attach_grad ()

После инициализации наших параметров наша следующая задача - обновить их, пока они не будут достаточно хорошо соответствовать нашим данным. Каждое обновление требует использования градиента нашей функции потерь относительно параметров.
Учитывая этот градиент, мы можем обновить каждый параметр в направлении, которое может уменьшить потери.
Поскольку никто не хочет вычислять градиенты явно (это утомительно и чревато ошибками), мы используем автоматическое дифференцирование, как описано в разделе 2.5, для вычисления градиента.
2.2.4. Определение модели
Затем мы должны определить нашу модель, связав ее входы и параметры с ее выходами. Напомним, что для расчета выходных данных линейной модели мы просто берем скалярное произведение матрица-вектор входных характеристик X и весов модели w и добавляем смещение b к каждому примеру. Обратите внимание, что ниже Xw - вектор, а b - скаляр. Вспомните механизм вещания, описанный в разделе 2.1.3. Когда мы складываем вектор и скаляр, скаляр добавляется к каждому компоненту вектора.
def linreg(X, w, b): #@save
"""The linear regression model."""
return np.dot(X, w) + b

2.2.5. Определение функции потерь
Поскольку для обновления нашей модели требуется взять градиент нашей функции потерь, мы должны сначала определить функцию потерь. Здесь мы будем использовать функцию потерь в квадрате, как описано в разделе 2.1. В реализации нам нужно преобразовать истинное значение y в форму y_hat предсказанного значения. Результат, возвращаемый следующей функцией, также будет иметь ту же форму, что и y_hat.
def squared_loss(y_hat, y): #@save
"""Squared loss."""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

2.2.6. Определение алгоритма оптимизации
Как мы обсуждали в разделе 2.1, линейная регрессия имеет решение в замкнутой форме. Однако это не курс о линейной регрессии: это курс о глубоком обучении. Поскольку ни одна из других моделей, представленных в этой курсе, не может быть решена аналитически, мы воспользуемся этой возможностью, чтобы представить ваш первый рабочий пример мини-пакетного стохастического градиентного спуска.
На каждом этапе, используя одну мини-партию, случайно выбранную из нашего набора данных, мы будем оценивать градиент потерь относительно наших параметров. Далее мы обновим наши параметры в направлении, которое может уменьшить потери. Следующий код применяет обновление стохастического градиентного спуска мини-пакета, учитывая набор параметров, скорость обучения и размер пакета. Размер шага обновления определяется скоростью обучения lr. Поскольку наши потери рассчитываются как сумма по мини-партии примеров, мы нормализуем размер нашего шага на размер партии (batch_size), так что величина типичного размера шага не сильно зависит от нашего выбора размера партии.
def sgd(params, lr, batch_size): #@save
"""Minibatch stochastic gradient descent."""
for param in params:
param[:] = param - lr * param.grad / batch_size

2.2.7. Обучение
Теперь, когда у нас есть все части, мы готовы реализовать основной цикл обучения. Крайне важно, чтобы вы понимали этот код, потому что вы будете снова и снова видеть почти идентичные циклы обучения на протяжении всей своей карьеры в области глубокого обучения.
На каждой итерации мы будем брать мини-серию обучающих примеров и передавать их через нашу модель, чтобы получить набор прогнозов. После расчета потерь мы инициируем обратный проход по сети, сохраняя градиенты по каждому параметру. Наконец, мы вызовем алгоритм оптимизации sgd для обновления параметров модели.
Таким образом, мы выполним следующий цикл:
· Инициализировать параметры (w, b)
· Повторяйте, пока не будете готовы.
· - Вычислить градиент g ← ∂ (w, b) 1/| B | Σi∈B l (x(i), у(i), w, b)
· - Обновить параметры (w, b) ← (w, b) - ηg
В каждую эпоху мы будем перебирать весь набор данных (используя функцию data_iter) один раз, пройдя через каждый пример в обучающем наборе данных (при условии, что количество примеров делится на размер пакета). Количество эпох num_epochs и скорость обучения lr являются гиперпараметрами, которые мы установили здесь на 3 и 0,03 соответственно. К сожалению, установка гиперпараметров является сложной задачей и требует некоторой корректировки методом проб и ошибок. Мы опускаем эти детали на данный момент, но исправим их позже в главе 11.
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
with autograd.record():
l = loss(net(X, w, b), y) # Minibatch loss in `X` and `y`
# Because `l` has a shape (`batch_size`, 1) and is not a scalar
# variable, the elements in `l` are added together to obtain a new
# variable, on which gradients with respect to [`w`, `b`] are computed
l.backward()
sgd([w, b], lr, batch_size) # Update parameters using their gradient
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.024673
epoch 2, loss 0.000088
epoch 3, loss 0.000051

В этом случае, поскольку мы сами синтезировали набор данных, мы точно знаем, каковы истинные параметры. Таким образом, мы можем оценить свой успех в обучении, сравнив истинные параметры с теми, которые мы узнали в ходе цикла обучения. Действительно, они оказываются очень близки друг к другу.
print(f'error in estimating w: {true_w - w.reshape(true_w.shape)}')
print(f'error in estimating b: {true_b - b}')
error in estimating w: [0.00027168 0.00017285]
error in estimating b: [0.00034523]

Обратите внимание, что мы не должны считать само собой разумеющимся, что мы можем полностью восстановить параметры.
Однако в машинном обучении мы обычно меньше озабочены восстановлением истинных базовых параметров и больше озабочены параметрами, которые приводят к высокоточному прогнозированию. К счастью, даже в сложных задачах оптимизации стохастический градиентный спуск часто может найти замечательно хорошие решения, отчасти благодаря тому факту, что для глубоких сетей существует множество конфигураций параметров, которые приводят к высокоточному прогнозированию.
Резюме
· Мы увидели, как глубокую сеть можно реализовать и оптимизировать с нуля, используя только тензоры и автоматическое дифференцирование, без необходимости определения слоев или причудливых оптимизаторов.
· Этот раздел лишь поверхностно описывает то, что возможно. В следующих разделах мы опишем дополнительные модели, основанные на только что представленных концепциях, и узнаем, как их реализовать более лаконично.
Упражнения
1. Что бы произошло, если бы мы инициализировали веса равными нулю. Будет ли алгоритм работать?
2. Предположим, что вы Георг Симон Ом, пытаясь придумать модель между напряжением и током. Можете ли вы использовать автоматическое дифференцирование, чтобы узнать параметры вашей модели?
3. Можете ли вы использовать закон Планка для определения температуры объекта с использованием спектральной плотности энергии?
4. С какими проблемами вы можете столкнуться, если захотите вычислить вторые производные? Как бы вы их исправили?
5. Зачем нужна функция reshape в функции squared_loss?
6. Поэкспериментируйте, используя разные скорости обучения, чтобы узнать, насколько быстро падает значение функции потерь.
7. Если количество примеров не может быть разделено на размер пакета, что происходит с поведением функции data_iter?
Обсуждение (см. https://discuss.d2l.ai/t/42)
2.3. Краткая реализация линейной регрессии
Широкий и интенсивный интерес к глубокому обучению в течение последних нескольких лет вдохновил компании, ученых и любителей на разработку множества зрелых фреймворков с открытым исходным кодом для автоматизации повторяющейся работы по реализации алгоритмов обучения на основе градиентов. В разделе 2.2 мы использовали только (i) тензоры для хранения данных и линейную алгебру; и (ii) автоматическое дифференцирование для расчета градиентов. На практике, поскольку итераторы данных, функции потерь, оптимизаторы и уровни нейронной сети настолько распространены, современные библиотеки также реализуют эти компоненты для нас.
В этом разделе мы покажем вам, как в сжатой форме реализовать модель линейной регрессии из раздела 3.2, используя высокоуровневые API фреймворков глубокого обучения.
2.3.1. Создание набора данных
Для начала мы сгенерируем тот же набор данных, что и в разделе 2.2.
from d2l import mxnet as d2l
from mxnet import autograd, gluon, np, npx
npx.set_np()
true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.3.2. Чтение набора данных
Вместо того, чтобы использовать собственный итератор, мы можем вызвать существующий API в структуре для чтения данных. Мы передаем функции и метки в качестве аргументов и указываем batch_size при создании экземпляра объекта итератора данных. Кроме того, логическое значение is_train указывает, хотим ли мы, чтобы объект-итератор данных перетасовывал данные в каждую эпоху (проходил через набор данных).
def load_array(data_arrays, batch_size, is_train=True): #@save
"""Construct a Gluon data iterator."""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)

Теперь мы можем использовать data_iter почти так же, как мы вызывали функцию data_iter в Разделе 2.2. Чтобы убедиться, что он работает, мы можем прочитать и распечатать первую мини-серию примеров. По сравнению с разделом 2.2, здесь мы используем iter для создания итератора Python и используем next для получения первого элемента из итератора.
next(iter(data_iter))
[array([[ 0.162333 , 0.49869943],
[ 0.5310543 , 0.42618173],
[ 0.1942086 , -0.91510016],
[-1.6843003 , 0.7371474 ],
[ 1.4011933 , -0.19310263],
[ 0.7231325 , -0.35720438],
[-0.580725 , 0.0188676 ],
[-0.7903738 , -1.883068 ],
[ 0.42705402, -0.5675769 ],
[-1.4315921 , -0.01926271]]),
array([[ 2.8328426],
[ 3.8171759],
[ 7.706438 ],
[-1.6596903],
[ 7.659188 ],
[ 6.8564215],
[ 2.9789436],
[ 9.012126 ],
[ 6.9836216],
[ 1.4025525]])]

2.3.3. Определение модели
Когда мы реализовали линейную регрессию с нуля в разделе 2.2, мы явно определили параметры нашей модели и закодировали вычисления для получения выходных данных с использованием основных операций линейной алгебры. Вы должны знать, как это сделать. Но как только ваши модели станут более сложными, и вам придется делать это почти каждый день, вы будете рады помощи. Ситуация аналогична написанию собственного блога с нуля. Выполнение этого один или два раза полезно и поучительно, но вы были бы паршивым веб-разработчиком, если бы каждый раз, когда вам понадобился блог, вы потратили месяц на изобретение колеса.
Для стандартных операций мы можем использовать предопределенные слои фреймворка, которые позволяют нам сосредоточиться особенно на слоях, используемых для построения модели, вместо того, чтобы сосредоточиться на реализации.
Сначала мы определим переменную net модели, которая будет ссылаться на экземпляр класса Sequential.
Класс Sequential определяет контейнер для нескольких слоев, которые будут связаны вместе. Учитывая входные данные, экземпляр Sequential передает их через первый уровень, в свою очередь, передавая выходные данные как входные данные второго уровня и так далее. В следующем примере наша модель состоит только из одного слоя, поэтому нам не нужен Sequential. Но поскольку почти все наши будущие модели будут включать несколько уровней, мы все равно будем использовать их, чтобы познакомить вас с наиболее стандартным рабочим процессом.
Вспомните архитектуру одноуровневой сети, показанную на рис. 2.1.2. Слой считается полностью связанным, потому что каждый из его входов связан с каждым из его выходов посредством умножения матрицы на вектор.
В Gluon полносвязный слой определяется в классе Dense. Поскольку мы хотим генерировать только один скалярный вывод, мы устанавливаем это число в 1.
Стоит отметить, что для удобства Gluon не требует от нас указывать входную форму для каждого слоя. Итак, здесь нам не нужно сообщать Gluon, сколько входов входит в этот линейный слой. Когда мы впервые пытаемся передать данные через нашу модель, например, когда мы позже выполняем net (X), Gluon автоматически выводит количество входов для каждого слоя. Мы опишем, как это работает более подробно позже.
# `nn` is an abbreviation for neural networks
from mxnet.gluon import nn
net = nn.Sequential()
net.add(nn.Dense(1))

2.3.4. Инициализация параметров модели
Перед использованием сети нам необходимо инициализировать параметры модели, такие как веса и смещение в модели линейной регрессии. Фреймворки глубокого обучения часто имеют предопределенный способ инициализации параметров. Здесь мы указываем, что каждый весовой параметр должен выбираться случайным образом из нормального распределения со средним значением 0 и стандартным отклонением 0,01. Параметр смещения будет инициализирован равным нулю.
Мы импортируем модуль инициализатора из MXNet. Этот модуль предоставляет различные методы инициализации параметров модели. Gluon делает init доступным как ярлык (аббревиатура) для доступа к пакету инициализатора. Мы только указываем, как инициализировать вес, вызывая init.
Нормальный (сигма = 0,01). По умолчанию параметры смещения инициализируются нулем.
from mxnet import init
net.initialize(init.Normal(sigma=0.01))

Приведенный выше код может показаться простым, но вы должны заметить, что здесь происходит что-то странное. Мы инициализируем параметры для сети, хотя Gluon еще не знает, сколько измерений будет иметь вход! Это может быть 2, как в нашем примере, или 2000. Gluon позволяет нам уйти от этого, потому что за сценой инициализация фактически откладывается. Настоящая инициализация произойдет только тогда, когда мы впервые попытаемся передать данные по сети. Просто будьте осторожны, помните, что, поскольку параметры еще не инициализированы, мы не можем получить к ним доступ или управлять ими.

2.3.5. Определение функции потерь
В Gluon модуль потерь определяет различные функции потерь. В этом примере мы будем использовать глюоновую реализацию квадрата потерь (L2Loss).
loss = gluon.loss.L2Loss()
2.3.6. Определение алгоритма оптимизации
Стохастический градиентный спуск Minibatch является стандартным инструментом для оптимизации нейронных сетей, и поэтому Gluon поддерживает его вместе с рядом вариаций этого алгоритма через свой класс Trainer.
Когда мы создаем экземпляр Trainer, мы укажем параметры для оптимизации (которые можно получить из сети нашей модели через net.collect_params ()), алгоритм оптимизации, который мы хотим использовать (sgd), и словарь гиперпараметров, необходимых для нашего алгоритма оптимизации. Для мини-пакетного стохастического градиентного спуска просто необходимо установить значение learning_rate, которое здесь установлено на 0,03.
from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})

2.3.7. Обучение
Вы могли заметить, что для выражения нашей модели через высокоуровневые API фреймворка глубокого обучения требуется сравнительно немного строк кода. Нам не нужно было индивидуально выделять параметры, определять нашу функцию потерь или реализовывать мини-пакетный стохастический градиентный спуск. Как только мы начнем работать с гораздо более сложными моделями, преимущества высокоуровневых API значительно возрастут. Однако, когда у нас есть все основные элементы, сам цикл обучения поразительно похож на тот, который мы делали при реализации всего с нуля.
Чтобы освежить вашу память: в течение некоторого количества эпох мы полностью перейдем к набору данных (train_data), итеративно получая одну мини-партию входных данных и соответствующие метки наземной истины. Для каждой мини-партии проходим следующий ритуал:
· Сгенерируйте прогнозы, вызвав net (X), и вычислите потери l (прямое распространение).
· Вычислить градиенты путем обратного распространения ошибки.
· Обновите параметры модели, вызвав наш оптимизатор.
Для удобства мы вычисляем потери после каждой эпохи и распечатываем их для отслеживания прогресса.
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l.mean().asnumpy():f}')
epoch 1, loss 0.024841
epoch 2, loss 0.000091
epoch 3, loss 0.000051

Ниже мы сравниваем параметры модели, полученные в результате обучения на конечных данных, и фактические параметры, которые сгенерировали наш набор данных. Чтобы получить доступ к параметрам, мы сначала получаем доступ к нужному нам слою из сети, а затем получаем доступ к весам и смещению этого слоя. Как и в нашей реализации с нуля, обратите внимание, что наши оценочные параметры близки к их достоверным аналогам.
w = net[0].weight.data()
print(f'error in estimating w: {true_w - w.reshape(true_w.shape)}')
b = net[0].bias.data()
print(f'error in estimating b: {true_b - b}')
error in estimating w: [0.00064719 0.00027823]
error in estimating b: [0.00020218]

Резюме
· Используя Gluon, мы можем реализовать модели намного более лаконично.
· В Gluon модуль данных предоставляет инструменты для обработки данных, модуль nn определяет большое количество слоев нейронной сети, а модуль потерь определяет множество общих функций потерь.
· Инициализатор модуля MXNet предоставляет различные методы для инициализации параметров модели.
· Размерность и хранилище предполагаются автоматически, но будьте осторожны, чтобы не пытаться получить доступ к параметрам до их инициализации.
Упражнения
1. Если мы заменим l = loss (output, y) на l = loss (output, y) .mean (), нам нужно изменить trainer.step (batch_size) на trainer.step (1), чтобы код вел себя идентично. Зачем?
2. Изучите документацию MXNet, чтобы узнать, какие функции потерь и методы инициализации предоставляются в модулях gluon.loss и init. Замените потерю потерей Хубера.
3. Как получить доступ к градиенту плотного веса?
Обсуждение (см. https://discuss.d2l.ai/t/44)
2.4. Регрессия Softmax
В Разделе 2.1 мы представили линейную регрессию, работая над реализациями с нуля в Разделе 2.2 и снова используя высокоуровневые API фреймворка глубокого обучения в Разделе 2.3 для выполнения тяжелой работы.
Регрессия - это молоток, к которому мы дотрагиваемся, когда хотим ответить на вопросы, как много? или сколько?. Если вы хотите предсказать количество долларов (цену), по которым будет продан дом, или количество побед, которые может иметь бейсбольная команда, или количество дней, в течение которых пациент будет находиться в больнице до выписки, тогда вы, вероятно, ищете регрессионную модель.
На практике нас чаще интересует классификация: спрашивают не «сколько», а «какое»:
· Входит ли это электронное письмо в папку для спама или во входящие?
· Будет ли у этого клиента больше шансов подписаться или не подписаться на услугу подписки?
· На этом изображении изображен осел, собака, кошка или петух?
· Какой фильм Aston, скорее всего, посмотрит следующим?
В разговорной речи специалисты по машинному обучению перегружают классификацию слов, чтобы описать две тонко разные проблемы: (i) те, где нас интересует только жесткое присвоение примеров категориям (классам); и (ii) те, в которых мы хотим выполнить мягкие назначения, то есть оценить вероятность того, что каждая категория применима. Различие имеет тенденцию стираться отчасти потому, что часто, даже когда мы заботимся только о жестких назначениях, мы все еще используем модели, которые выполняют мягкие назначения.


2.4.1. Проблема классификации
Чтобы намочить ноги, давайте начнем с простой задачи классификации изображений. Здесь каждый вход состоит из изображения в градациях серого 2 × 2. Мы можем представить каждое значение пикселя с помощью одного скаляра, что дает нам четыре функции x1, x2, x3, x4. Далее, предположим, что каждое изображение принадлежит к одной из категорий «кошка», «курица» и «собака».
Далее нам нужно выбрать, как представлять метки. У нас есть два очевидных выбора. Возможно, наиболее естественным побуждением было бы выбрать y∈ {1, 2, 3}, где целые числа представляют {собаку, кошку, курицу} соответственно. Это отличный способ хранить такую ​​информацию на компьютере. Если бы категории имели какой-то естественный порядок среди них, скажем, если бы мы пытались предсказать {ребенок, малыш, подросток, молодой взрослый, взрослый, гериатрический}, тогда, возможно, даже имеет смысл рассматривать эту проблему как регрессию и сохранять ярлыки в этом формате.
Но задачи общей классификации не связаны с естественным упорядочением классов. К счастью, статистики давно изобрели простой способ представления категориальных данных: кодирование. Одноразовое кодирование - это вектор с таким количеством компонентов, сколько у нас есть категорий. Компонент, соответствующий конкретной категории экземпляра, установлен на 1, а все остальные компоненты установлены на 0. В нашем случае метка y была бы трехмерным вектором с (1, 0, 0), соответствующим «cat», ( 0, 1, 0) на «курицу» и (0, 0, 1) на «собаку»:
y ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.                                              (2.4.1)
2.4.2. Сетевая архитектура
Чтобы оценить условные вероятности, связанные со всеми возможными классами, нам нужна модель с несколькими выходами, по одному на класс. Для классификации с помощью линейных моделей нам понадобится столько аффинных функций, сколько у нас есть выходов. Каждый вывод будет соответствовать своей собственной аффинной функции. В нашем случае, поскольку у нас есть 4 функции и 3 возможные выходные категории, нам понадобится 12 скаляров для представления весов (w с индексами) и 3 скаляра для представления смещений (b с индексами). Мы вычисляем эти три логита, o1, o2 и o3, для каждого входа:
о1 = x1w11 + x2w12 + x3w13 + x4w14 + b1,
о2 = x1w21 + x2w22 + x3w23 + x4w24 + b2,
o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3.                           (2.4.2)

Мы можем изобразить этот расчет с помощью нейросетевой схемы, показанной на рис. 2.4.1. (см. рисунок в книге) Как и в линейной регрессии, регрессия softmax также является однослойной нейронной сетью. И поскольку вычисление каждого выхода, o1, o2 и o3, зависит от всех входов, x1, x2, x3 и x4, выходной уровень регрессии softmax также можно описать как полностью связанный слой.
Чтобы выразить модель более компактно, мы можем использовать обозначение линейной алгебры. В векторной форме мы приходим к o = Wx + b, форме, лучше подходящей как для математики, так и для написания кода. Обратите внимание, что мы собрали все наши веса в матрицу 3 × 4, и что для характеристик данной точки данных x наши выходы даются как матрично-векторное произведение наших весов на наши входные характеристики плюс наши смещения b.
2.4.3. Работа Softmax
Основной подход, который мы собираемся здесь использовать, - интерпретировать выходные данные нашей модели как вероятности. Мы оптимизируем наши параметры для получения вероятностей, которые максимизируют вероятность наблюдаемые данные. Затем для генерации прогнозов мы установим порог, например, выбрав метку с максимальными предсказанными вероятностями.
Формально мы хотели бы, чтобы любой выход yˆj интерпретировался как вероятность того, что данный элемент принадлежит классу j. Затем мы можем выбрать класс с наибольшим выходным значением в качестве нашего прогноза argmaxjyj. Например, если yˆ1, yˆ2 и yˆ3 равны 0,1, 0,8 и 0,1 соответственно, то мы прогнозируем категорию 2, которая (в нашем примере) представляет «курицу».
У вас может возникнуть соблазн предложить, чтобы мы интерпретировали логиты напрямую как представляющие интерес результаты.
Однако есть некоторые проблемы с прямой интерпретацией выходных данных линейного слоя как вероятности. С одной стороны, ничто не ограничивает суммирование этих чисел до 1. С другой стороны, в зависимости от входных данных, они могут принимать отрицательные значения. Это нарушает основные аксиомы вероятности.
Чтобы интерпретировать наши результаты как вероятности, мы должны гарантировать, что (даже на новых данных) они будут неотрицательными и в сумме будут равны 1. Более того, нам нужна цель обучения, которая побуждает модель точно оценивать вероятности. Из всех случаев, когда классификатор выводит 0,5, мы надеемся, что половина этих примеров действительно будет принадлежать предсказанному классу. Это свойство называется калибровкой.
Функция softmax, изобретенная в 1959 году социологом Р. Дунканом Люсом в контексте моделей выбора, делает именно это. Чтобы преобразовать наши логиты так, чтобы они стали неотрицательными и суммировались до 1, при этом требуя, чтобы модель оставалась дифференцируемой, мы сначала возводим в степень каждый логит (обеспечивая неотрицательность), а затем делим на их сумму (гарантируя, что их сумма равна 1):
yˆ = softmax (o),      где yˆj = exp (oj)/Σk ехр (ok),                 (2.4.3)
Легко видеть, что yˆ1 + ˆy2 + ˆy3 = 1, где 0 ≤ yˆj ≤ 1 для всех j. Таким образом, yˆ является правильным распределением вероятностей, значения элементов которого можно интерпретировать соответствующим образом. Обратите внимание, что операция softmax не изменит порядок логитов o, которые представляют собой просто значения pre-softmax, которые определяют вероятности, присвоенные каждому классу. Таким образом, во время прогнозирования мы все еще можем выделить наиболее вероятный класс по 
argmaxj yˆj = argmaxj oj.                                                (2.4.4)
Хотя softmax является нелинейной функцией, выходы регрессии softmax по-прежнему определяются аффинным преобразованием входных функций; Таким образом, регрессия softmax является линейной моделью.
2.4.4. Векторизация для минипакетов
Чтобы повысить эффективность вычислений и воспользоваться преимуществами графических процессоров, мы обычно выполняем векторные вычисления для минипакетов данных. Предположим, что нам дана мини-партия X примеров с размерностью функций (количество входов) d и размер партии n. Более того, предположим, что у нас есть q категорий на выходе. Тогда признаки мини-пакета X принадлежат Rn × d, веса W ∈ Rd × q и смещение удовлетворяет условию b ∈ R1 × q.
O = XW + b,
Yˆ = softmax (O).                                                              (2.4.5)
Это ускоряет доминирующую операцию в матричном произведении XW против произведений матрица-вектор, которые мы бы выполняли, если бы мы обрабатывали один пример за раз. Поскольку каждая строка в X представляет точку данных, сама операция softmax может быть вычислена построчно: для каждой строки O возвести в степень все записи, а затем нормализовать их на сумму. Инициируя широковещательную передачу во время суммирования XW + b в (3.4.5), логиты O мини-пакета и вероятности выхода Yˆ являются матрицами размера n × q.
2.4.5. Функция потерь
Затем нам нужна функция потерь, чтобы измерить качество наших предсказанных вероятностей. Мы будем полагаться на оценку максимального правдоподобия, ту же самую концепцию, с которой мы столкнулись при предоставлении вероятностного обоснования цели среднеквадратичной ошибки в линейной регрессии (раздел 2.1.3).
Log-правдоподобие
Функция softmax дает нам вектор yˆ, который мы можем интерпретировать как оценочные условные вероятности каждого класса при любом входном x, например, yˆ1 = P (y = cat | x). Предположим, что весь набор данных {X, Y} имеет n примеров, где пример, проиндексированный i, состоит из вектора признаков x(i) и вектора y(i) одной метки. Мы можем сравнить оценки с реальностью, проверив, насколько вероятны фактические классы в соответствии с нашей моделью, учитывая особенности:
P (Y | X) = ∏ni = 1 Р (у(i) | x(i)).                                                     (2.4.6)
Согласно оценке максимального правдоподобия, мы максимизируем P (Y | X), что эквивалентно минимизации отрицательного логарифмического правдоподобия:
- log P (Y | X) = ∑ni = 1 - log P (y(i) | x(i)) = ∑ni = 1 l (у(i), yˆ(i)),      (2.4.7)
где для любой пары метки y и прогноза модели yˆ по q классам функция потерь l равна
l (y, yˆ) = - Σqj = 1 yj log yˆj.                                                          (2.4.8)
По причинам, которые будут объяснены ниже, функцию потерь в (2.4.8) обычно называют потерями кросс-энтропии.
Так как y - горячий вектор длины q, сумма по всем его координатам j равна нулю для всех членов, кроме одного. Поскольку все yˆj являются предсказанными вероятностями, их логарифм никогда не превышает 0. Следовательно, функция потерь не может быть минимизирована дальше, если мы правильно предсказываем фактическую метку с уверенностью, т. e. если предсказанная вероятность P (y | x) = 1 для фактической метки y. Учтите, что это часто невозможно. Например, в наборе данных может присутствовать шум подписи (некоторые примеры могут быть неправильно маркированы). Это также может быть невозможно, когда входные характеристики недостаточно информативны, чтобы идеально классифицировать каждый пример.
Softmax и производные
Поскольку softmax и соответствующая потеря являются настолько распространенными, стоит немного лучше понять, как они вычисляются. Подставляя (2.4.3) в определение потерь в (2.4.8) и используя определение softmax, получаем:
l (y, yˆ) = - Σqj = 1 yj log exp (oj)/Σqk = 1 ехр (ок) 
             = Σqj = 1 yj log∑qк = 1 ехр (ок) - Σqj = 1 yjoj
            = log∑qk = 1 ехр (ок) - Σqj = 1 yjoj.                                                   (2.4.9)
Чтобы лучше понять, что происходит, рассмотрим производную по любому logit oj. Мы получим
∂oj l (y, yˆ) = exp (oj)/Σqk = 1 ехр (ок) - yj = softmax (o) j - yj.       (2.4.10)
Другими словами, производная - это разница между вероятностью, присвоенной нашей моделью, как выражено операцией softmax, и тем, что произошло на самом деле, как выражено элементами в векторе one-hot label. В этом смысле это очень похоже на то, что мы видели в регрессии, где градиент был разницей между наблюдением y и оценкой yˆ. Это не совпадение.
В любой модели экспоненциального семейства (см. онлайн-приложение о распределениях) градиенты логарифма правдоподобия задаются именно этим термином. Этот факт упрощает вычисление градиентов на практике.
Потеря кросс-энтропии
Теперь рассмотрим случай, когда мы наблюдаем не только один результат, но и полное распределение результатов. Мы можем использовать то же представление, что и раньше, для метки y. Единственное отличие состоит в том, что вместо вектора, содержащего только двоичные записи, скажем (0, 0, 1), теперь у нас есть общий вектор вероятности, скажем (0,1, 0,2, 0,7). Математика, которую мы использовали ранее для определения потерь l в: eqref: eq_l_cross_entropy, по-прежнему работает нормально, только интерпретация является немного более общей.
Это ожидаемое значение потерь при распределении по этикеткам. Эта потеря называется потерей кросс-энтропии, и это одна из наиболее часто используемых потерь для задач классификации. Мы можем демистифицировать это имя, познакомив только с основами теории информации. Если вы хотите понять более подробную информацию о теории информации, вы можете дополнительно обратиться к онлайн-приложению по теории информации.
2.4.6. Основы теории информации
Теория информации занимается проблемами кодирования, декодирования, передачи и управления информацией (также известной как данные) в максимально сжатой форме.
Энтропия
Центральная идея теории информации - количественная оценка информационного содержания данных. Это количество жестко ограничивает нашу способность сжимать данные. В теории информации эта величина называется энтропией распределения p, и она описывается следующим уравнением:
H [p] = ∑j−p (j) log p (j).                                                          (2.4.11)
Одна из фундаментальных теорем теории информации гласит, что для кодирования данных, случайно взятых из распределения p, нам нужно, по крайней мере, H [p] «nats» для их кодирования. Если вам интересно, что такое «nat», это эквивалент bit, но при использовании кода с базой e, а не с базой 2.
Таким образом, один nat равен 
1/log (2) ≈ 1,44 бита.
Surprisal
Вам может быть интересно, какое отношение сжатие имеет к предсказанию. Представьте, что у нас есть поток данных, который мы хотим сжать. Если нам всегда легко предсказать следующий токен, то эти данные легко сжать! Возьмем крайний пример, когда каждый токен в потоке всегда принимает одно и то же значение. Это очень скучный поток данных! И не только скучно, но еще и легко предсказуемо. Поскольку они всегда одинаковы, нам не нужно передавать какую-либо информацию для передачи содержимого потока. Легко предсказать, легко сжать.
Однако, если мы не можем точно предсказать каждое событие, иногда мы можем быть удивлены. Наше удивление еще больше, когда мы приписываем событию меньшую вероятность. Клод Шеннон остановился на log 1 / P (j) = - log P (j) для количественной оценки неожиданности при наблюдении события j, присвоив ему (субъективную) вероятность P (j). Энтропия, определенная в (2.4.11), тогда является ожидаемым сюрпризом, когда назначаются правильные вероятности, которые действительно соответствуют процессу генерации данных.
Возвращение к кросс-энтропии
Итак, если энтропия - это уровень удивления, испытанный кем-то, кто знает истинную вероятность, тогда вам может быть интересно, что такое кросс-энтропия? Перекрестная энтропия от p до q, обозначенная H (p, q), является ожидаемым сюрпризом для наблюдателя с субъективными вероятностями q при просмотре данных, которые фактически были сгенерированы в соответствии с вероятностями p. Наименьшая возможная кросс-энтропия достигается, когда p = q. В этом случае кросс-энтропия от p до q равна H (p, p) = H (p).
Короче говоря, мы можем думать о цели кросс-энтропийной классификации двумя способами: (i) как максимизацию вероятности наблюдаемых данных; и (ii) как минимизация наших неожиданностей (и, следовательно, количества битов), необходимых для передачи меток.
2.4.7. Прогнозирование и оценка модели
После обучения регрессионной модели softmax, учитывая любые примеры функций, мы можем предсказать вероятность каждого выходного класса. Обычно мы используем класс с наибольшей предсказанной вероятностью как выходной класс. Прогноз правильный, если он соответствует фактическому классу (метке). В следующей части эксперимента мы будем использовать точность для оценки производительности модели. Это равно отношению количества правильных предсказаний к общему количеству предсказаний.
Резюме
· Операция softmax берет вектор и отображает его в вероятности.
· Регрессия Softmax применяется к задачам классификации. Он использует распределение вероятностей выходного класса в операции softmax.
· Кросс-энтропия - хорошая мера разницы между двумя распределениями вероятностей. Он измеряет количество битов, необходимых для кодирования данных нашей модели.
Упражнения
1. Мы можем исследовать связь между экспоненциальными семействами и softmax более глубоко.
· Вычислить вторую производную кросс-энтропийных потерь l (y, yˆ) для softmax.
· Вычислите дисперсию распределения, заданного softmax (o), и покажите, что оно соответствует второй производной, вычисленной выше.
2. Предположим, что у нас есть три класса, которые встречаются с равной вероятностью, т.е. вектор вероятности равен (1/3, 1/3, 1/3).
· В чем проблема, если мы попытаемся создать для нее двоичный код?
· Можете ли вы разработать лучший код? Подсказка: что произойдет, если мы попытаемся закодировать два независимых наблюдения? Что, если мы закодируем n наблюдений вместе?
3. Softmax - неправильное название для представленного выше сопоставления (но его используют все, кто занимается глубоким обучением). Реальный softmax определяется как RealSoftMax (a, b) = log (exp (a) + exp (b)).
· Докажите, что RealSoftMax (a, b)> max (a, b).
· Докажите, что это верно для λ−1RealSoftMax (λa, λb), если λ> 0.
· Покажите, что при λ → ∞ имеем λ−1RealSoftMax (λa, λb) → max (a, b).
· Как выглядит soft-min?
· Расширить это на более чем два числа.
Обсуждение (см. https://discuss.d2l.ai/t/46)
2.5. Набор данных классификации изображений
Одним из широко используемых наборов данных для классификации изображений является набор данных MNIST (LeCun et al., 1998).
Несмотря на то, что он хорошо зарекомендовал себя в качестве эталонного набора данных, даже простые модели по сегодняшним стандартам достигают точности классификации более 95%, что делает его непригодным для различия между более сильными моделями и более слабыми. Сегодня MNIST служит скорее проверкой работоспособности, чем эталоном. Чтобы немного поднять ставки, в следующих разделах мы сосредоточим наше обсуждение на качественно похожем, но сравнительно сложном наборе данных Fashion-MNIST (Xiao et al., 2017), который был выпущен в 2017 году.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon
import sys
d2l.use_svg_display()



2.5.1. Чтение набора данных
Мы можем загрузить и прочитать набор данных Fashion-MNIST в память с помощью встроенных функций в фреймворке.
mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)

Fashion-MNIST состоит из изображений из 10 категорий, каждая из которых представлена ​​6000 изображениями в наборе обучающих данных и 1000 изображениями в наборе тестовых данных. Набор тестовых данных (или набор тестов) используется для оценки производительности модели, а не для обучения. Следовательно, обучающий набор и тестовый набор содержат 60000 и 10000 изображений соответственно.
len (mnist_train), len (mnist_test)
(60000, 10000)

Высота и ширина каждого входного изображения составляют 28 пикселей. Обратите внимание, что набор данных состоит из изображений в градациях серого, количество каналов которых равно 1. Для краткости в этой книге мы храним форму любого изображения высотой h шириной w пикселей как h × w или (h, w).
mnist_train [0] [0] .shape (28, 28, 1)
Изображения в Fashion-MNIST связаны со следующими категориями: футболка, брюки, пуловер, платье, пальто, сандалии, рубашка, кроссовки, сумка и ботильоны. Следующая функция преобразует числовые индексы меток в их имена в тексте.
def get_fashion_mnist_labels (метки): # @ save
"" "Вернуть текстовые метки для набора данных Fashion-MNIST." ""
text_labels = ['футболка', 'брюки', 'пуловер', 'платье', 'пальто',
"сандалии", "рубашка", "кроссовки", "сумка", "ботильоны"]
return [text_labels [int (i)] для i в ярлыках]

Теперь мы можем создать функцию для визуализации этих примеров.
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
ax.imshow(d2l.numpy(img))
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes

Вот изображения и соответствующие им метки (в тексте) для первых нескольких примеров в наборе обучающих данных.
X, y = mnist_train [: 18]
show_images (X.squeeze (axis = -1), 2, 9, title = get_fashion_mnist_labels (y));

2.5.2. Чтение мини-партии
Чтобы упростить себе жизнь при чтении из обучающих и тестовых наборов, мы используем встроенный итератор данных, а не создаем его с нуля. Напомним, что на каждой итерации загрузчик данных каждый раз считывает минипакет данных размером batch_size. Мы также случайным образом перемешиваем примеры для итератора обучающих данных.
batch_size = 256
def get_dataloader_workers(): #@save
"""Use 4 processes to read the data except for Windows."""
return 0 if sys.platform.startswith('win') else 4
# `ToTensor` converts the image data from uint8 to 32-bit floating point. It
# divides all numbers by 255 so that all pixel values are between 0 and 1
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer),
batch_size, shuffle=True,
num_workers=get_dataloader_workers())
Let us look at the time it takes to read the training data.
timer = d2l.Timer()
for X, y in train_iter:
continue
f'{timer.stop():.2f} sec'
'1.84 sec'




2.5.3. Собираем все вместе
Теперь мы определяем функцию load_data_fashion_mnist, которая получает и читает набор данных Fashion-MNIST. Он возвращает итераторы данных как для обучающего набора, так и для набора проверки. Кроме того, он принимает необязательный аргумент для изменения размера изображения до другой формы.
def load_data_fashion_mnist(batch_size, resize=None): #@save
"""Download the Fashion-MNIST dataset and then load it into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.ToTensor()]
if resize:
trans.insert(0, dataset.transforms.Resize(resize))
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))

Ниже мы тестируем функцию изменения размера изображения функции load_data_fashion_mnist, указав
the resize argument.
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
print(X.shape, X.dtype, y.shape, y.dtype)
break
(32, 1, 64, 64) <class 'numpy.float32'> (32,) <class 'numpy.int32'>

Теперь мы готовы работать с набором данных Fashion-MNIST в следующих разделах.
Резюме
· Fashion-MNIST - это набор данных классификации одежды, состоящий из изображений, представляющих 10 категорий. Мы будем использовать этот набор данных в следующих разделах и главах для оценки различных алгоритмов классификации.
· Мы сохраняем форму любого изображения высотой h шириной w пикселей как h × w или (h, w).
· Итераторы данных - ключевой компонент для эффективной работы. Положитесь на хорошо реализованные итераторы данных, которые используют высокопроизводительные вычисления, чтобы избежать замедления цикла обучения.
Упражнения
1. Влияет ли уменьшение batch_size (например, до 1) на скорость чтения?
2. Производительность итератора данных важна. Как вы думаете, текущая реализация достаточно быстра? Изучите различные варианты его улучшения.
3. Ознакомьтесь с онлайн-документацией по API фреймворка. Какие еще наборы данных доступны?
Обсуждение (см. https://discuss.d2l.ai/t/48)
2.6. Реализация регрессии Softmax с нуля
Подобно тому, как мы реализовали линейную регрессию с нуля, мы считаем, что регрессия softmax также фундаментальна, и вам следует знать подробности того, как ее реализовать самостоятельно. Мы будем работать с набором данных Fashion-MNIST, только что представленным в разделе 3.5, настраивая итератор данных с размером пакета 256.
from d2l import mxnet as d2l
from mxnet import autograd, np, npx, gluon
from IPython import display
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.6.1. Инициализация параметров модели
Как и в нашем примере линейной регрессии, каждый пример здесь будет представлен вектором фиксированной длины. Каждый пример в наборе необработанных данных представляет собой изображение размером 28 × 28. В этом разделе мы сгладим каждое изображение, рассматривая их как векторы длиной 784. В будущем мы поговорим о более сложных стратегиях использования пространственной структуры в изображениях, но пока мы рассматриваем местоположение каждого пикселя как просто еще одну функцию.
Напомним, что в регрессии softmax у нас столько выходов, сколько классов. Поскольку в нашем наборе данных 10 классов, наша сеть будет иметь выходное измерение 10. Следовательно, наши веса будут составлять матрицу 784 × 10, а смещения будут составлять вектор-строку 1 × 10. Как и в случае с линейной регрессией, мы инициализируем наши веса W гауссовым шумом и наши смещения, чтобы принять начальное значение 0.
num_inputs = 784
num_outputs = 10
W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
W.attach_grad()
b.attach_grad()

2.6.2. Определение работы Softmax
Перед реализацией модели регрессии softmax давайте кратко рассмотрим, как оператор суммы работает по определенным измерениям в тензоре, как обсуждалось в разделах 2.3.6 и 2.3.6. Учитывая матрицу X, мы можем суммировать по всем элементам (по умолчанию) или только по элементам на одной оси, то есть в том же столбце (ось 0) или той же строке (ось 1). Обратите внимание: если X - тензор с формой (2, 3), и мы суммируем по столбцам, результатом будет вектор с формой (3,). При вызове оператора суммы мы можем указать, чтобы количество осей оставалось в исходном тензоре, а не сворачивалось измерение, по которому мы суммировали. В результате получится двумерный тензор с формой (1, 3).
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
(array([[5., 7., 9.]]),
array([[ 6.], [15.]]))

Теперь мы готовы реализовать операцию softmax. Напомним, что softmax состоит из трех шагов:
i) мы возводим в степень каждый член (используя exp); 
ii) мы суммируем по каждой строке (у нас есть одна строка на каждый пример в пакете), чтобы получить константу нормализации для каждого примера; 
iii) мы делим каждую строку на ее константу нормализации, гарантируя, что результат будет равен 1. Прежде чем смотреть на код, давайте вспомним, как это выглядит выраженным в виде уравнения:
softmax(X)ij = exp(Xij )/∑k exp(Xik).                                                    (2.6.1)

Знаменатель или нормализационная константа также иногда называют функцией распределения (а ее логарифм - функцией логарифмического распределения). Истоки этого названия лежат в статистической физике, где соответствующее уравнение моделирует распределение по ансамблю частиц.
def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # The broadcasting mechanism is applied here

Как видите, для любого случайного ввода мы превращаем каждый элемент в неотрицательное число. Кроме того, каждая строка суммирует от 1, что требуется для вероятности.
X = np.random.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(array([[0.22376052, 0.06659239, 0.06583703, 0.29964197, 0.3441681 ],
[0.63209665, 0.03179282, 0.194987 , 0.09209415, 0.04902935]]),
array([1. , 0.99999994]))

Обратите внимание: хотя математически это выглядит правильно, мы были немного небрежны в нашей реализации, потому что не приняли мер предосторожности против числового переполнения или потери значимости из-за больших или очень маленьких элементов матрицы.
2.6.3. Определение модели
Теперь, когда мы определили операцию softmax, мы можем реализовать модель регрессии softmax.
Приведенный ниже код определяет, как входные данные сопоставляются с выходными через сеть. Обратите внимание, что мы сглаживаем каждое исходное изображение в пакете в вектор с помощью функции reshape перед передачей даннх через нашу модель.
def net(X):
return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b)

2.6.4. Определение функции потерь
Затем нам нужно реализовать функцию потерь кросс-энтропии, как описано в разделе 3.4. Это может быть самая распространенная функция потерь во всем глубоком обучении, потому что на данный момент проблемы классификации намного превосходят проблемы регрессии.
Напомним, что кросс-энтропия использует отрицательную логарифмическую вероятность предсказанной вероятности, присвоенной истинной метке. Вместо того, чтобы повторять прогнозы с помощью цикла for Python (который, как правило, неэффективен), мы можем выбрать все элементы с помощью одного оператора. Ниже мы создаем игрушечные данные y_hat с двумя примерами предсказанных вероятностей для трех классов. Затем мы выбираем вероятность первого класса в первом примере и вероятность третьего класса во втором примере.
y = np.array([0, 2])
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]
array([0.1, 0.5])

Теперь мы можем эффективно реализовать функцию кросс-энтропийной потери всего одной строкой кода.
def cross_entropy(y_hat, y):
return - np.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
array ([2.3025851, 0.6931472])
2.6.5. Точность классификации
Учитывая предсказанное распределение вероятностей y_hat, мы обычно выбираем класс с наивысшей предсказанной вероятностью всякий раз, когда мы должны вывести твердое предсказание. Действительно, многие приложения требуют от нас выбора. Gmail должен разделять электронные письма на «Основное», «Социальное», «Обновления» или «Форумы». Он может оценивать вероятности внутренне, но в конце концов он должен выбрать один из классов.
Когда прогнозы соответствуют классу метки y, они верны. Точность классификации - это доля всех верных прогнозов. Хотя может быть сложно напрямую оптимизировать точность (она не дифференцируема), часто это показатель производительности, который нас больше всего волнует, и мы почти всегда сообщаем об этом при обучении классификаторов.
Чтобы вычислить точность, мы делаем следующее. Во-первых, если y_hat является матрицей, мы предполагаем, что во втором измерении хранятся оценки прогнозов для каждого класса. Мы используем argmax для получения предсказанного класса по индексу для самой большой записи в каждой строке. Затем мы поэлементно сравниваем предсказанный класс с истинным значением y. Поскольку оператор равенства == чувствителен к типам данных, мы преобразуем тип данных y_hatʼs в соответствие с типом y. Результатом является тензор, содержащий записи 0 (ложь) и 1 (истина).
Сумма дает количество правильных прогнозов.
def accuracy(y_hat, y): #@save
"""Compute the number of correct predictions."""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(d2l.reduce_sum(cmp.astype(y.dtype)))

Мы продолжим использовать переменные y_hat и y, определенные ранее, как предсказанные распределения вероятностей и метки соответственно. Мы можем видеть, что класс предсказания первого примера равен 2 (самый большой элемент строки - 0,6 с индексом 2), что несовместимо с фактической меткой 0.
Класс предсказания второго примера - 2 (самый большой элемент строки - 0,5 с индексом 2), что согласуется с фактической меткой - 2. Следовательно, степень точности классификации для этих двух примеров составляет 0,5.
accuracy(y_hat, y) / len(y)
0.5

Точно так же мы можем оценить точность для любой сети модели в наборе данных, доступ к которому осуществляется через итератор данных data_iter.
def evaluate_accuracy(net, data_iter): #@save
"""Compute the accuracy for a model on a dataset."""
metric = Accumulator(2) # No. of correct predictions, no. of predictions for _, (X, y) in enumerate(data_iter):
metric.add(accuracy(net(X), y), y.size)
return metric[0] / metric[1]

Здесь Accumulator - это служебный класс для накопления сумм по нескольким переменным. В приведенной выше функции eval_accuracy мы создаем 2 переменные в экземпляре Accumulator для хранения количества правильных прогнозов и количества прогнозов соответственно. Оба будут накапливаться с течением времени, когда мы перебираем набор данных.
class Accumulator: #@save
"""For accumulating sums over `n` variables."""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]

Поскольку мы инициализировали сетевую модель со случайными весами, точность этой модели должна быть близка к случайному угадыванию, то есть 0,1 для 10 классов.
evaluate_accuracy(net, test_iter)
0.0811

2.6.6. Обучение
Цикл обучения для регрессии softmax должен выглядеть поразительно знакомым, если вы прочитаете нашу реализацию линейной регрессии в разделе 2.2. Здесь мы реорганизуем реализацию, чтобы сделать ее многоразовой. Сначала мы определяем функцию для тренировки за одну эпоху. Обратите внимание, что средство обновления - это общая функция для обновления параметров модели, которая принимает размер пакета в качестве аргумента. Это может быть либо оболочка функции d2l.sgd, либо встроенная функция оптимизации фреймворка.
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""Train a model within one epoch (defined in Chapter 3)."""
# Sum of training loss, sum of training accuracy, no. of examples
metric = Accumulator(3) if isinstance(updater, gluon.Trainer):
updater = updater.step for X, y in train_iter:
# Compute gradients and update parameters
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)
# Return training loss and training accuracy
return metric[0] / metric[2], metric[1] / metric[2]

Перед тем, как продемонстрировать реализацию обучающей функции, мы определяем служебный класс, отображающий данные в анимации. Опять же, он направлен на упрощение кода в остальной части курса.
class Animator: #@save
"""For plotting data in animation."""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# Incrementally plot multiple lines
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# Use a lambda function to capture arguments
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# Add multiple data points into the figure
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

Следующая обучающая функция затем обучает сеть модели на наборе обучающих данных, доступ к которому осуществляется через train_iter для нескольких эпох, что определяется параметром num_epochs. В конце каждой эпохи модель оценивается на тестовом наборе данных, доступ к которому осуществляется через test_iter. Мы будем использовать класс Animator для визуализации прогресса обучения.
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""Train a model (defined in Chapter 3)."""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc

В качестве реализации с нуля мы используем стохастический градиентный спуск мини-пакета, определенный в разделе 2.2, для оптимизации функции потерь модели со скоростью обучения 0,1.
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)

Теперь обучаем модель с 10 эпохами. Обратите внимание, что и количество эпох (num_epochs), и скорость обучения (lr) являются регулируемыми гиперпараметрами. Изменив их значения, мы сможем повысить точность классификации модели.
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

2.6.7. Прогнозирование
Теперь, когда обучение завершено, наша модель готова к классификации некоторых изображений. Учитывая серию изображений, мы сравним их фактические метки (первая строка вывода текста) и прогнозы модели (вторая строка вывода текста).
def predict_ch3(net, test_iter, n=6): #@save
"""Predict labels (defined in Chapter 3)."""
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)

Резюме
· С помощью регрессии softmax мы можем обучать модели мультиклассовой классификации.
· Цикл обучения регрессии softmax очень похож на цикл обучения линейной регрессии: извлечение и чтение данных, определение моделей и функций потерь, затем обучение моделей с использованием алгоритмов оптимизации. Как вы вскоре узнаете, в большинстве распространенных моделей глубокого обучения процедуры обучения аналогичны.
Упражнения
1. В этом разделе мы напрямую реализовали функцию softmax на основе математического определения операции softmax. Какие проблемы это может вызвать? Подсказка: попробуйте вычислить размер exp (50).
2. Функция cross_entropy в этом разделе была реализована в соответствии с определением функции потерь кросс-энтропии. В чем может быть проблема с этой реализацией? Подсказка: рассмотрите область логарифма.
3. Какие решения вы можете придумать, чтобы исправить две проблемы, указанные выше?
4. Всегда ли возвращать наиболее вероятную этикетку? Например, вы бы сделали это для медицинского диагноза?
5. Предположим, что мы хотим использовать регрессию softmax для предсказания следующего слова на основе некоторых характеристик. Какие проблемы могут возникнуть из-за большого словарного запаса?
Обсуждение (см. https://discuss.d2l.ai/t/50)
1.7. Краткая реализация регрессии Softmax
Подобно тому, как высокоуровневые API фреймворков глубокого обучения значительно упростили реализацию линейной регрессии в Разделе 2.3, мы найдем ее аналогичным (или, возможно, более) удобным для реализации моделей классификации. Давайте придерживаться набора данных Fashion-MNIST и сохраним размер пакета 256, как в разделе 2.6.
from d2l import mxnet as d2l
from mxnet import gluon, init, npx
from mxnet.gluon import nn
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.7.1. Инициализация параметров модели
Как упоминалось в разделе 2.4, выходной уровень регрессии softmax является полностью связанным слоем. Следовательно, для реализации нашей модели нам просто нужно добавить один полностью связанный слой с 10 выходами в наш Sequential. Опять же, здесь в Sequential нет необходимости, но мы могли бы сформировать привычку, поскольку она будет повсеместной при реализации глубоких моделей. Опять же, мы произвольно инициализируем веса с нулевым средним и стандартным отклонением 0,01.
net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

2.7.2. Возвращение к реализации Softmax
В предыдущем примере раздела 2.6 мы вычислили выходные данные нашей модели, а затем пропустили эти выходные данные через кросс-энтропийные потери. С математической точки зрения это вполне разумный поступок. Однако с вычислительной точки зрения возведение в степень может быть источником проблем с численной стабильностью.
Напомним, что функция softmax вычисляет yˆj =  exp (oj)/ ∑k ехр (oк), где yˆj - j-й элемент предсказанного распределения вероятностей yˆ, а oj - j-й элемент логитов o. Если некоторые из значений ok очень большие (т. е. очень положительные), то exp (ok) может быть больше, чем наибольшее число, которое мы можем иметь для определенных типов данных (т. е. переполнение). Это сделает знаменатель (и / или числитель) бесконечностью, и мы получим либо 0, либо inf (бесконечность), либо nan (не число) для yˆj. В этих ситуациях мы не получаем четко определенного возвращаемого значения перекрестной энтропии.
Один из способов обойти это - сначала вычесть max (ok) из всех ok, прежде чем приступить к вычислению softmax. Вы можете убедиться, что это смещение каждого ok на постоянный коэффициент не изменяет возвращаемое значение softmax. После этапа вычитания и нормализации может оказаться возможным, что некоторые oj будут иметь большие отрицательные значения и, таким образом, соответствующее exp (oj) примет значения, близкие к нулю. Их можно округлить до нуля из-за конечной точности (т. е. недополнения), сделав yˆj равным нулю и дав нам -inf для log (ˆyj). Пройдя несколько шагов по пути обратного распространения ошибки, мы можем столкнуться с огромным количеством ужасных результатов нанотехнологий.
К счастью, нас спасает тот факт, что, хотя мы вычисляем экспоненциальные функции, мы в конечном итоге намереваемся вести их журнал (при вычислении потерь кросс-энтропии). Комбинируя эти два оператора softmax и кросс-энтропию вместе, мы можем избежать проблем с числовой стабильностью, которые в противном случае могли бы беспокоить нас во время обратного распространения ошибки. Как показано в приведенном ниже уравнении, мы избегаем вычисления exp (oj) и можем использовать вместо oj напрямую из-за сокращения в log (exp (·)).
log (ˆyj ) = log (exp(oj )/∑k exp(ok))
     = log (exp(oj )) − log (∑k exp(ok))
     = oj − log (∑k exp(ok)),

Мы хотим, чтобы обычная функция softmax всегда была под рукой на тот случай, если мы когда-нибудь захотим оценить вероятности вывода с помощью нашей модели. Но вместо того, чтобы передавать вероятности softmax в нашу новую функцию потерь, мы просто передадим логиты и вычислим softmax и его журнал одновременно внутри функции кросс-энтропийных потерь, которая делает умные вещи вроде «трюка LogSumExp».
loss = gluon.loss.SoftmaxCrossEntropyLoss ()
2.7.3. Алгоритм оптимизации
Здесь мы используем мини-пакетный стохастический градиентный спуск со скоростью обучения 0,1 в качестве алгоритма оптимизации. Обратите внимание, что это то же самое, что мы применили в примере линейной регрессии, и это иллюстрирует общую применимость оптимизаторов.
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})
2.7.4. Обучение
Затем мы вызываем обучающую функцию, определенную в разделе 2.6, для обучения модели.
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

Как и прежде, этот алгоритм сходится к решению, которое обеспечивает приличную точность, хотя на этот раз с меньшим количеством строк кода, чем раньше.
Резюме
· Используя высокоуровневые API, мы можем гораздо более кратко реализовать регрессию softmax.
· С вычислительной точки зрения реализация регрессии softmax имеет сложности. Обратите внимание, что во многих случаях структура глубокого обучения принимает дополнительные меры предосторожности, помимо этих наиболее известных приемов, для обеспечения числовой стабильности, избавляя нас от еще большего количества ловушек, с которыми мы столкнемся, если на практике попытаемся кодировать все наши модели с нуля.
Упражнения
1. Попробуйте настроить гиперпараметры, такие как размер пакета, количество эпох и скорость обучения, чтобы увидеть, каковы результаты.
2. Увеличивайте количество эпох для обучения. Почему через некоторое время точность теста может снизиться? Как мы могли это исправить?
Обсуждение (см. https://discuss.d2l.ai/t/52)
